An Integrated Fault Tolerant Robotic Controller System
for High Reliability and Safety ‘

Neville 1. Marzwell
Jet Propulsion 1.aboratory
California Institute of Technology
Pasadena, CA 91109

Kam S. ‘I'so and Myron Hecht
SoHaR Incorporated
Beverly hills, CA 90211

ABSTRACT

‘I"his paper describes the concepts and features of afault-to] erant intelligent robotic control system
being developed for applications that require high dependability (reliability, availability, and
safety). ‘1" he system consists of two major elements. a faulttolerant con troller and an operator
workstation. The fault tolerant controller uses a strategy which allows for detection and recovery
of hardware, operating system, and application software failures. It has a recovery time of less
than 40 milliseconds, aperiod short enough for nearly all real time applications. Protection against
higher level unsafe events (e.g., collisions) is provided by software resident in a separate operator
workstation which includes features to predict collisions and reduce the human workload thereby
reducing errors and enhancing safety, The fault tolerant controller can be used by itself in a wide
variety of applications in industry, process control, and communications. The controller in
combination with the operator workstation can be applied to robotic applications such as
spaceborne extravehiclar actvities, hazardous materials handling, inspection and maintenance of
high value items (e.%., space vehicles, reactor internals, or aircraft), medicine, and other tasks
where arobot system failure poses a significant risk to life or property.

1. INTRODUCTION

Uncertain failure behavior and the potential for unsafe events have been significant concerns for the
application of robots in some critical applications. Farlier work [1, 2, 3, 4] has defined two
classes of potential hazards in robot controllers: those caused by system level failures, i.e., failure
of the robot controller itself and those caused by rask level failures, i.e., semantically valid
commands input to the robot controller which in fact could result in collisions, unsafe movements,
or other hazards.

Figure 1 shows atop level view of the fault tolerant robotics controller system based on this view.
‘J here arc two main subsystems. an operator workstation and the controller subsystem. The
operator workstation is a Silicon Graphics IRIS Crimson/VGXT running the IRIX 5.2 operating
system. The controller subsystem consists of a pair of redundant VME chassis running Motorola
68040 Single Board Computers under the VxWorks Release 5.] real time multitasking kernel.
The operator workstation interfaces with the controller subsystem over Ethernet. The two
redundant VME chassis are interfaced to each other using a high speed BIT 3 bus adapter, and each
have a separate connection to the robot arm. For the purposes of test and evaluation, these systems
arc being integrated with the Robotics Research 7 DOF arm located at the Jet Propulsion
Laboratory (JPI.).

The approach integrates a sophisticated user interface with hardware and software fault tolerance
resident in the controller. Three kcy technologies have emerged from this work:

R

Operator
Vorkstation

Controller
subystem

Figure 1. Top 1 .evel System View

. Comprehensive and high performance (40 msec recovery time) fault tolerance
i mplemented as an executive layer on the VxWorks kernel.

. A robot controller implemented using | Jistributed Recovery Blocks, and

. A user interface allowing for the creation of complex eventsequences and providing
operator feedback through a simulation of the robot arm.

The first two technologies are associated with the controller subsystem and are described in the
following section. Section 3 describes some aspects of the user interface. Section 4 describes
potential follow-on uses of these technologies either as separate entities or as an integrated system.

2. FAULT TOLERANT CONTROLLER

The fault tolerant controller accepts Cartesian coordinates and translates them into joint angles
which are then output to servo controllers within the robot. Fault tolerance for hardware,
software, and communications failures is necessary in the controller because it must respond
rapidly to failures. A real-time fault-tolerant distributed architecture called the Extended Distributed
Recovery Block (EDRB) [5] handles controller failures. The underlying fault tolerance algorithms
and mechanisms arc based on the distributed recovery block [6] which is in turn based on the
classical recovery block [7] with real time extensions. Figure 2 isatop level diagram of arobotic
control system which incorporates the EDRB.

in the terminology of the EDRB, the replicated controller computers are collectively referred to as
an operational node pair. One member of the node pair, called the active node, provides control and
processing for the robot and sensors. The other node, referred to as the shadow, operates as a
standby. The active and shadow nodes exchange frequent periodic status messages, called
heartbeats, over redundant communication lines as both an indication of their states of health and

for state dataupdates. If the shadow node senses the absence of its companion active node's
heartbeat, it will promote itself to the activestatus after verifying concurrence withasupervisor.
The supervisor in this system isatask resident on the controller workstation. This concurrence is
required in order to prevent aspurious takeover ducto faulty communications in the shadow node
or afalse alarm ductoatransicnt anomaly. After taking over, the newly promoted active node will
induce a hardware reset and software reload of the failed node in the hope of restoring it to backup
status. The supervisor itself need not be replicated because it is needed only to assist in recovery;
the EDRB can function in steady state without the supervisor.

Figure 2 shows how distributed recovery blocks arc implemented in the EDRB. Within both the
active and shadow nodes are two versions of the task execution software, rcfcrred to as the
primary and alternate routines. Under normal circumstances, the primary routine is run on the.
active node while the alternate routine is concurrently run on the shadow. The primary routine is
coded to provide the greatest functionality, accuracy, and performance. The alternate routine
provides less functionality and performance, but is coded to optimize reliability.

The EDRB tolerates a broad range of hardware, system software, and application failures
including:

. Robotic task execution software not outputting a correct setpoint by the required deadline

(detected by means of acceptance tests, timers, and rccovercd from using the alternate
routine).

- Hardware or system software failures (detected by rncans of information encoding,
timers, and recovered from by switching to the redundant processor).

External
Heartbeat
Indicator
2
1
Superviisor
‘= Executing / ‘\HeanbeaUReset Request
¥ Consent _ ~
\ctive Node Node Shado
Node Executive Executive | Node
- —— Heartheal .
(Primary Alternate >
_ Routine * Routne @
~ ~ s
‘ Alternate Primary
Routine Routine
N PR
7 S e <.
</ Acceptance ™. < Acceptance™
- '[(3§t/// \Iest/
Device Devi Device Device
Driver Drive Driver Driver
|
\J v
To System To System

Figure 2. Software Architecture of EDRB

-Communications link failures (detected by means of encoding, and recovered from using
retransmission, and redundant communication links).

. Spurious recovery actions (avoided by means of the supervisor and consideration of
failurc histories in the node executive).

Onc of the most important characteristics of the EIDRB for robotic control applications is its fast
response and recovery time. The algorithms used in the EDRB fault detection and recovery
modules arc fast because they do not require any kind of rollback. “I"his characteristic is achieved
by executing the primary and alternate routines in parallel. The EDRB provides the general
framework of the primary routine, alternate routine, and acceptance test which work together to
tolerate software faults. However, it is necessary to define application specific algorithms for the
primary and alternate routines, as well asto define acceptance tests which dependably distinguish
bet ween correct and incorrect output.

1 ‘or the controller application, diversity between the the primary and alternate routines is achieved
using (1) the Jacobian pscudoinverse [8] which has good tracking but cannot handle singularity,
and (2) the damped least square [9] which is singularity robust but has bad tracking near
singularity. The primary routine can use the Jacobian pseudoinverse to ensure good tracking, while
the alternate routine, based on the damped least square, would be used when the primary fails to
handle singularity. Because many of the software failures in these routines are likely to bein the
mathematical operations, the alternate routine will rely on lookup tables instead of math library
functions provided by the compiler.

The acceptance test is the single most critical clement of the EDRB. The two potential failure modes
arc rejection of a correct result or acceptance of an incorrect result. In order to avoid these failure
modes, the acceptance test must be both simple so that it can be thoroughly verified and general so
that it provides an adequate level of coverage and safety. While these are rigorous requirements,
they arc feasible in robotic applications. In the free motion example, the acceptance test will
determine (1) that the next setpoint is closer to the destination than the previous, (2) the difference
between the observed joint angles and the command joint angles are with in an acceptable range,
(3) the command joint angles arc not close to joint limits, and (4) the observed force/torque values
arc within an acceptable range of the gravitational force of the grasped object.

3. OPERATOR WOI{KS T ATION

The operator workstation provides both a user interface and additional functionality to prevent
collisions and other unsafe actions. This functionality is necessary because athough the fault
tolerant controller can prevent unsafe actions caused by loss of controller hardware or software
(i.c., systemlevel hazards), it can not prevent collisions or other undesirable events which are
caused by deliberate and planned motion (i.e., task level hazards).

The following capabilities are being developed for the operator workstation to enhance safety:

® Graphical User Interface: A sophisticated graphical user interface allows operators to
easily command and monitor robot motions. The interface design is intended to minimize
confusion and fatigue thereby prevent operator errors. Figure 3 shows an example of this
interface tailored for remote surface inspect ion,

. Collision Prediction: The operator will have the ability to identify volumes of prohibited
motion. Prior to performing a command, a robotic simulator running in the workstation
will determine whether the motion will cause movement through prohibited areas.

